Geometric Effects in RLAs

- Three geometries
 - ◆ Racetrack
 - **★** Two linacs
 - ★ All arcs same length as longest arc
 - ◆ Dogbone
 - **★** Single linac
 - ★ Turn around at each end: 420°
 - **★** Length proportional to energy
 - ◆ Racetrack taking shortcuts
 - * Turn hard
 - **★** Go straight to get between linacs
- Optimize each design for 3–20 RLA

	Racetrack	Shortcut	Dogbone
Passes	8	9	10
Linac (GeV)	2.268	2.026	1.782
Phase (°)	20	21	17
η/B	0.0474	0.0511	0.0151
$\Delta E ({ m MeV})$	180	174	207
Cost (Nrb)	185	166	146

Conclusions

- Dogbone
 - Advantages
 - **★** Lower cost
 - ★ Easier switchyard
 - **★** Lower momentum compaction
 - Disadvantages
 - ★ Parking garage (largest radius: 60 m for 1 T)
 - ★ Slightly larger energy spread
 - **★** More loading
 - > More passes
 - > Smaller phase
- Shortcut
 - ◆ Lower cost, not as much as dogbone
 - Disadvantages
 - **★** Parking garage
 - **★** Worse switchyard
 - **★** Higher momentum compaction